Neuartige basische Liganden für die homogenkatalytische Methanolcarbonylierung, VI¹⁾

Die Komplexchemie mehrzähniger (Tetrahydrofurfuryl)phosphane und ihr Einfluß auf die Selektivität und den Umsatz bei der Ethanolsynthese aus Methanol

Ekkehard Lindner*, Hermann August Mayer und Peter Wegner

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 20. Februar 1986

Die P,O-Liganden Ph₂PCH₂C₄H₇O (2) und PhP(CH₂C₄H₇O)₂ (3) reagieren mit (OC)₅MTHF (1a,b) [M = Mo (a), W (b)] zu den Pentacarbonylmetall-Komplexen 4b bzw. 5a,b [Gl. (1) und (2)]. Bestrahlung von 4b, 5a,b und bereits bekanntem 4a in Ether liefert die kinetisch instabilen Tetracarbonylmetall-Komplexe $(OC)_4MPPh_2CH_2C_4H_7O$ (6a, b) und $(OC)_4MPPh(CH_2C_4H_7O)_2$ (7a,b) mit jeweils zweizähniger Funktionsweise von 2, 3 über Phosphor und Sauerstoff. Mit CO sind die Reaktionen reversibel, ohne daß 2, 3 vom Komplexrumpf abgetrennt werden [Gl. (3) und (4)]. Aus Mo(CO)₆ und 2 bildet sich trans-(OC)₄Mo(PPh₂CH₂C₄H₇O)₂ (trans-8a), das sich über einen "Auf- und Zuklappmechanismus" unter Beteiligung von 2 und der labilen Mo-O-Bindung in cis-8a umlagert [Gl. (5)]. Die Lösung der W-O-Bindung in 6b, 7b gelingt auch mit $P(OMe)_3$ unter Bildung von $(OC)_4W[P(OMe)_3]PPh_2CH_2C_4H_7O$ (9b) und $(OC)_4W[P(OMe)_3]PPh(CH_2C_4H_7O)_2$ (10b) [Gl. (6)]. Die unterschiedlichen Bindungsverhältnisse in 4-7 ergeben sich aus den IR-, ${}^{31}P{}^{1}H{}^{-}$, ${}^{13}C{}^{1}H{-}$ und ${}^{1}H-NMR-Spektren.$ Der Einfluß von 2 und 3 auf die Homologisierung von Methanol zu Ethanol wurde untersucht unter Verwendung von Cobalt als Katalysatormetall und Iod als Promotor. In Abhängigkeit vom Synthesegasverhältnis erhält man mit 2 und gleicher Katalysatorzusammensetzung in guter Selektivität entweder Ethanol oder Methylacetat bei Umsätzen von 50 bis 70%. Das Katalysatorgemisch übersteht mehrere Zyklen unbeschadet.

Novel Basic Ligands for the Homogeneous Catalytic Methanol Carbonylation, VI¹⁾ The Complex Chemistry of Multidentate (Tetrahydrofurfuryl)phosphanes and their Influence on the Selectivity and Conversion for the Synthesis of Ethanol from Methanol

The P,O ligands $Ph_2PCH_2C_4H_7O(2)$ and $PhP(CH_2C_4H_7O)_2(3)$ react with $(OC)_5MTHF(1 a, b)$ [M = Mo (a), W (b)] to give the pentacarbonylmetal complexes 4b and 5a, b, respectively [eq. (1) and (2)]. Irradiation of 4b, 5a, b and the already known 4a in ether affords the kinetic unstable tetracarbonylmetal complexes $(OC)_4MPPh_2CH_2C_4H_7O$ (6a,b) and $(OC)_4MPPh(CH_2C_4H_7O)_2(7 a, b)$ with a bidentate function of 2, 3 in each case via phosphorus and oxygen. With CO the reactions are reversible without separation of 2, 3 from the core of the complex [eq. (3) and (4)]. From Mo(CO)_6 and 2 trans-(OC)_4Mo(PPh_2CH_2C_4H_7O)_2 (trans-8a) is formed which is rearranged to cis-8a via an "opening and closing mechanism"

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0808-2616 \$ 02.50/0 with participation of 2 and the labile Mo-O bond [eq. (5)]. The scission of the W-O bonds in **6b**, **7b** succeeds also with $P(OMe)_3$ with formation of $(OC)_4W[P(OMe)_3]PPh_2CH_2C_4H_7O$ (**9b**) and $(OC)_4W[P(OMe)_3]PPh(CH_2C_4H_7O)_2$ (**10b**) [eq. (6)]. The different bonding conditions in 4-7 result from the IR, ${}^{31}P{}^{1}H{}$, ${}^{13}C{}^{1}H{}$, and ${}^{1}H$ NMR spectra. The influence of 2 and 3 on the homologation of methanol to ethanol was investigated using cobalt as a component of the catalyst and iodine as a promotor. Dependent on the ratio of the synthesis gas, with 2 and equal catalyst composition in good selectivity either ethanol or methyl acetate is formed with conversions of 50 to 70%. The catalyst combination survives several cycles intact.

Vor kurzem berichteten wir²⁾ über mehrzähnige (Tetrahydrofurfuryl)phosphane, von denen erwartet wird, daß sie infolge ihrer speziellen Konzeption die Homologisierung von Methanol zu Ethanol³⁻⁶ in bezug auf Selektivität und Umsatz⁶⁻⁸⁾ günstig beeinflussen. Diese Liganden knüpfen über das P-Atom festen Kontakt zum Metallzentrum und besitzen mit in den cyclischen Ether eingebauten Sauerstoffatomen weitere Donorfunktionen⁹. Bei ihrer Verwendung wird von der Vorstellung ausgegangen, daß sie mit Metallen in niedrigen Oxidationsstufen Verbindungen ergeben, die reversibel leicht zu öffnende M-O-Bindungen enthalten, ohne daß bei der Öffnung die Sauerstoffdonatoren vom Komplexrumpf abgetrennt werden. Damit stehen während des Katalysecyclus ständig freie Koordinationsstellen zur Verfügung^{3,6)}. Dieses Prinzip ermöglicht die Erzeugung pseudounterkoordinierter, hochreaktiver Metallkomplexe, die leicht oxidative Additionen eingehen sollten, insbesondere, wenn durch das Ligandensystem hohe Elektronendichte auf das Metall übertragen wird¹⁰⁻¹³⁾. Ziel der vorliegenden Arbeit ist die Gewinnung von Carbonylmolybdän- und -wolfram-Komplexen mit diesen P,O-Liganden, die sich als Modellverbindungen zur Demonstration des "Auf- und Zuklappmechanismus" eignen und zudem über eine thermische Stabilität verfügen, die es noch erlaubt, spektroskopische Untersuchungen durchzuführen. Außerdem werden die Liganden auf ihre Auswirkung bezüglich von Selektivität und Umsatz bei der Methanolhydrocarbonylierung geprüft.

Resultate und Diskussion

Zum Studium der komplexchemischen Eigenschaften werden die zwei- und dreizähnigen (Tetrahydrofurfuryl)phosphane 2 und 3 in THF zunächst mit den Lösungsmitteladdukten 1a,b¹⁴⁾ zu den farblosen, in allen organischen Solventien leicht löslichen Pentacarbonylmolybdän- und -wolfram-Komplexen 4b, 5a,b umgesetzt [Gl. (1) und (2)]. 4a wurde bereits in einer früheren Arbeit beschrieben²⁾. Ein thermisch induzierter weiterer CO-Austausch zur Erzwingung von O-Koordination gelingt bei 4a,b, 5a,b nicht. Ebenso führt eine Substitution des π -Liganden in C₇H₈Mo(CO)₃ durch 3 zu keinem befriedigenden Ergebnis. Bestrahlt man dagegen eine etherische Lösung von 4a,b, 5a,b bei – 30°C, so wird jeweils Kohlenmonoxid durch das Sauerstoffatom eines über eine CH₂-Brücke an das P-Atom gebundenen THF-Moleküls unter Bildung der gelben bzw. ockergelben, kinetisch labilen, gegenüber Luftsauerstoff relativ resistenten Molybdän- und Wolframkom-

plexe **6a,b**, **7a,b** ersetzt, die sich nur unterhalb -10° C in polaren organischen Solventien unzersetzt lösen [Gl. (3) und (4)]. Im trockenen Zustand lassen sich die Molybdänverbindungen **6a**, **7a** unterhalb -30° C einige Tage aufbewahren, während die Wolframkomplexe **6b**, **7b** bei Raumtemperatur wochenlang ohne Veränderung lagerfähig sind. Der gewünschte "Auf- und Zuklappmechanismus" der P,O-Liganden **2**, **3** resultiert aus dem reversiblen Charakter der Umsetzungen **6a, b**, **7a, b** \rightleftharpoons **4a, b**, **5a, b** [Gl. (3) und (4)]. Leitet man bei -20° C Kohlenmonoxid durch eine THF-Lösung von **6a, b**, **7a, b**, so erfolgt unter Bruch des labilen M-O-Kontakts sofort Rückbildung zu **4a, b**, **5a, b**.

Einen weiteren Hinweis für den genannten Mechanismus liefern ³¹P{¹H}-NMR-spektroskopische Untersuchungen der Isomerisierung von trans-8a zu cis-8a, welche über die Stufe von **6a** verläuft [Gl. (5]]. Blaßgelbes trans-**8a** erhält man in guten Ausbeuten aus $Mo(CO)_6$ und $Ph_2PCH_2C_4H_7O$ (2) in Methylcyclohexan [Gl. (5)]. Beim Bestrahlen jeweils einer gesättigten und verdünnten Lösung von *trans*-8a in THF beobachtet man ${}^{31}P{}^{1}H{-}NMR{-}$ spektroskopisch zwar die Bildung der gleichen Reaktionsprodukte, jedoch entstehen diese in unterschiedlichen Konzentrationen. Während im ersten Fall neben nicht umgesetztem trans-8a wenig 2 und 6a in gleichen Mengen sowie als Hauptprodukt cis-8a vorliegen, treten im zweiten Fall neben trans-8a im wesentlichen nur 2 und 6a auf, während cis-8a nur in Spuren vorhanden ist. Diese Produktverteilung ändert sich in Abhängigkeit von der Zeit dahingehend, daß die Konzentration von cis-8a zuungunsten von 2 und 6a zunimmt. Diese Ergebnisse lassen sich so interpretieren, daß durch die Photolyse von trans-8a zunächst ein Ligand 2 in trans-Position abgelöst und die entsprechende Lücke durch den Sauerstoff eines über eine CH₂-Brücke an den Phosphor gebundenen THF-Moleküls geschlossen wird. Anschließend greift in Lösung befindliches 2 den Chelatkomplex 6a in cis-Position unter Abreaktion zu cis-8a an. Zur Prüfung der Identität wurde cis-8a auf unabhängigem Wege

aus nor- $C_7H_8Mo(CO)_4^{15}$ und zwei mol 2 in Ether bei $-20^{\circ}C$ dargestellt. Der stereospezifische Verlauf zu *cis*-8a¹⁶⁾ legt in Übereinstimmung mit den Isomerisierungsversuchen die Vermutung nahe, daß 2 unter Verdrängung des Norbornadiens zunächst zweizähnig fungiert¹⁷⁾, überschüssiger, sich in Lösung befindlicher Ligand 2 öffnet jedoch die Mo-O-Bindung unter Abreaktion zu *cis*-8a.

Die sehr labile W-O-Bindung läßt sich auch unter Bildung von 9b, 10b [Gl. (6)] durch Einwirkung von P(OMe)₃ auf 6b, 7b bei -20° C in THF lösen.

Durch den schrittweisen, photochemisch eingeleiteten Ersatz von CO durch Phosphor und Sauerstoff wird die maximale Koordinationsfähigkeit des dreizähnigen Liganden 3 nicht erreicht. Die σ -Donor-Eigenschaften des Sauerstoffs erhöhen in 7a,b die Elektronendichte am Metall unter Verstärkung der M-CO-Rückbindung³⁾, erkennbar an der langwelligen Verschiebung der CO-Valenzschwingungsfrequenzen (vgl. Tab. 1). Die Entfernung eines dritten CO-Moleküls könnte somit nur durch drastischere Reaktionsbedingungen¹⁸⁾ gelingen, die jedoch einen Bruch der schwächeren M-O-Bindung zur Folge hätte. Die kinetische Labilität der Metall-Sauerstoff-Bindung beruht auf der Unverträglichkeit des "weichen" Zentralatoms mit dem "harten" THF-Sauerstoff¹³⁾. Die volle Entfaltung der Dreizähnigkeit in 3 dürfte also nur mit "härteren" Koordinationszentren, d.h. bei Metallen in höheren Oxidationsstufen möglich sein.

Die monomere Zusammensetzung der Komplexe 4-10 ist durch das Auftreten je eines Molekülpeaks in den Felddesorptions-Massenspektren belegt.

In den IR-Spektren von **4a**,**b**, **5a**,**b** beobachtet man im 5 μ -Bereich die bekannte Topologie der CO-Absorptionen von oktaedrisch konfigurierten Pentacarbonylmetall-Komplexen. Die durch den zwei- bzw. dreizähnigen Liganden **2**, **3** hervorgerufene Symmetrieerniedrigung bewirkt bei **4a**,**b** das Auftreten der eigentlich IR-verbotenen B₁-Schwingung und im Falle von **5a**,**b** die Aufspaltung der Bande der E-Schwingung (vgl. Tab.1)¹⁹⁾. Bei der Aufnahme der IR-Spektren der Chelatkomplexe **6a**,**b**, **7a**,**b** in Lösung ist zu beachten, daß die Polarität der M-O-Bindung polare Solventien erfordert, diese aber durch Konkurrenz mit den Liganden zu einer Öffnung der M-O-Bindung und gleichzeitig durch ihre Polarität zu einer

Linienverbreiterung der CO-Absorptionen führen²⁰⁾. Als Kompromiß hat sich THF erwiesen, allerdings treten in sämtlichen Spektren wegen der geringeren Auflösung jeweils nur drei gegenüber **4a,b**, **5a,b** langwellig verschobene Banden auf²¹⁾. Außerdem zersetzen sich **6a,b** und **7a,b** schon nach wenigen Minuten, wobei unter anderem Pentacarbonylmetall-Spezies auftreten. Infolge von pseudo- D_{4h} -Symmetrie weist das IR-Spektrum von *trans*-**8a** nur eine CO-Bande auf²²⁾.

Der Sauerstoff in den THF-Ringen gibt sich in den IR-Spektren der Komplexe 4-8 sehr deutlich in Form einer Absorption der antisymmetrischen C₂O-Schwingung zu erkennen. Ohne Metall-Sauerstoff-Kontakt erscheint diese zwischen 1060 und 1045 cm⁻¹. Bei den Komplexen mit M-O-Wechselwirkung wird sie um bis zu 40 cm⁻¹ langwellig verschoben²³). Hieraus läßt sich entnehmen, daß in **7a,b** der P,O-Ligand **3** nur zweizähnig fungiert, da jeweils *eine Bande* in den genannten Bereichen auftritt (vgl. Tab.1).

Tab.	1.	C≡O-	und	antisymm	etrische	C_2O	-Valenzs	chwingunge	n (cm	⁻¹) in	den	IR-Sp	ektren
				-		vc	on 2 -10					-	

	v(C	= ()		v _{as} (C ₂ 0) ^{C)}				
2 ²⁾				· · · · ·	1060 st			
4a ²⁾	2074 sst	1995 m	1959 sst	1951 sst ^{a)}	1045 st			
6 a	2022 m	1906 sst	1858 st ^{b)}		1022 m			
trans-8	a	1900 sst ^{b)}			1047 m			
<u>cis-8a</u>	2022 m	1923 sch	1916 sst	1886 sch ^{b)}	1050 m			
4b	207 3 st	1987 ss	1952 sst	1945 sst ^{a)}	1045 m			
6b	2016 m	1 8 97 sst	1854 st ^{b)}		1023 m			
9b	2028 m	1939 st	1915 sst	1908 sst ^{a)}				
3 ²⁾					1060 st 1045 sch			
5a	2072 m	1957 sst	1950 sst	1943 sst ^{a)}	1056 m 1045 m			
7a	2020 m	1905 sst	1856 st ^{b)}		1047 ss 1022 ss			
5b	2071 m	1950 sst	1946 sst	1935 sst ^{a)}	1057 m 1050 m			
7Ь	2014 m	1891 sst	1853 st ^{b)}		1050 ss 1020 s-m			
1 0b	2027 st	1932 st	1917 sst	1903 sst ^{a)}				

^{a)} In n-Hexan. - ^{b)} In THF ausgeblendet. - ^{c)} Fest KBr.

Im Vergleich zu 4a,b, 5a,b sind die Signale in den ³¹P{¹H}-NMR-Spektren der Chelatkomplexe 6a,b, 7a,b typischerweise nach tiefem Feld verschoben. Der Ringbeitrag Δ_R variiert zwischen $\delta = 16.2$ und 39.7 und bestätigt damit das Vorliegen von fünfgliedrigen M-P-C-C-O-Heterocyclen²⁴. Das chirale C-Atom in den Tetrahydrofurylringen von 5a,b, 7a,b und 10b erzeugt Diastereomere, die sich in der unterschiedlichen Zahl von $^{13}C{^{1}H}$ - und $^{31}P{^{1}H}$ -NMR-Absorptionen äußern. Diese asymmetrischen C-Atome und die Prochiralität des Phosphors bedingen zwei *meso*-Formen und ein Enantiomerenpaar für 5a,b, die zu drei ^{31}P -Resonanzen verschiedener Intensität führen, während man in den Spektren von 4a,b, 6a,b jeweils nur ein scharfes Singulett beobachtet. Das Auftreten von vier anstelle der zu erwartenden acht ^{31}P -Signale unterschiedlicher Intensität in den Spektren von 7a,b deutet auf einen stereospezifischen Verlauf der Reaktion gemäß Gl. (4) hin. Modellstudien zeigen, daß die Konfiguration des chiralen C-Atoms des jeweiligen komplexge-

bundenen THF-Ringes verantwortlich ist für das entstehende Isomere von 7a,b. Besitzt dieses C-Atom S- bzw. R-Konfiguration, so nimmt aus Gründen der Ringspannung der Sauerstoff die gleiche Konfiguration ein²⁵⁾. Diese Überlegungen gelten sinngemäß auch für die Bildung von 6a,b [Gl. (3)]. Im Gegensatz zu *cis*-8a sind im ³¹P{¹H}-NMR-Spektrum von *trans*-8a keine Diastereomeren erkennbar. Die geringe Wechselwirkung der einzelnen P-Atome in 9b, 10b bestätigt die *cis*-Anordnung der Liganden²²⁾. Die Größe der ¹J_{WP}-Kopplungskonstanten von 4b-10b, welche sich über die ¹⁸³W-Satelliten bestimmen lassen, sind charakteristisch für den jeweiligen Komplextyp²⁴⁾.

Infolge von Diastereomeren erscheinen in den ¹H-NMR-Spektren von 3, 5a, b, 7a, b, *trans*-8a, *cis*-8a, 9b und 10b zwischen $\delta = 0.6$ und 4.3 komplizierte, von den Protonen der Tetrahydrofurfuryl-Reste herrührende Multiplettstrukturen. Zur besseren Auflösung des Linienmusters wurden 4a, b, 6a, b Hochfeldmessungen unterzogen (vgl. Abb. 1). Die Zuordnung der einzelnen Protonen gelingt schließlich am Beispiel von 6b und 4b durch Aufnahme

Abb. 1. Ausschnitt (Tetrahydrofurfuryl-Bereich) aus den ¹H-NMR-Spektren von 4b (unten) und 6b (oben) bei 400 MHz

eines zweidimensionalen ¹H-Verschiebungs- sowie $\delta({}^{13}C)/\delta({}^{14}H)$ -Korrelations-Experiments. In den Spektren von **4a,b** erfahren die Protonen gegenüber **2** nur geringe Hochfeldverschiebung, die beim Übergang zu den Chelatkomplexen **6a,b** stark zunimmt und für einzelne Protonen die Größenordnung erreicht, wie man sie in olefinischen Metall- π -Komplexen findet (vgl. Tab. 2 und Abb. 1)²⁶. Auf das Tetrahydrofurfuryl-Gerüst in **6a,b** wirken zwei gegenläufige Effekte ein. Infolge des durch den M-O-Kontakt hervorgerufenen Elektronendefizits übt der Ring-Sauerstoff auf seine Umgebung (H^{5'}, C², C⁴, C⁵) eine starke Entschirmung, das benachbarte (OC)₄M-Fragment dagegen eine Abschirmung (H², H³H^{3'}, H⁴H^{4'}, H⁵, H⁶H^{6'}, C³, C⁶) aus²⁷. Die Zuordnung der chemischen Verschiebungen der diastereotopen Protonen geschieht willkürlich.

Verb.	δ (ppm)	<u>J</u> (Hz)	Verb.	δ (ppm)	<u>J</u> (Hz)
PhPh \/	1.15-1.93 (m) H ⁴ H ⁴ 'H ³ H ³ '				
	2.18 H ⁶	$^{2}J_{H}6_{H}6' = 13.5^{a}$			
H ^e −C − H ^e H ² ↓ H ³	2.57 H ⁶	${}^{3}_{\underline{J}_{H}}{}^{6}_{H}^{2} = 7.9^{a}$			
	1	$^{2}_{-PH}^{5}6 = 1.1^{a}$			
H ^P H ^S H ⁴		${}^{3}J_{\mu}6'_{\mu}2 = 5.4^{a}$			
		$^{2}J_{PH}6' = 0^{a}$			
2 ²⁾	3.26-4.17 (m) H ² H ⁵ H ⁵ '				
4a b)	0.81-1.00 (m) H ^{3'}	$^{2}_{J_{H}}6_{H}6' = 13.8^{a}$	4 b ^{b)}	0.90-1.04 (m) H ^{3'}	2 J.,6.,6' = 13.8 ^{a)}
	1.10-1.25 (m) H ^{4'}	${}^{3}J_{11}6_{11}2 = 8.1^{a}$		1.13-1.27 (m) H ⁴	$-a = 7.9^{a}$
	1.26-1.41 (m) H ³ H ⁴	$^{2}J_{n} = 3.3^{a}$		1,28-1.44 (m) H ³ H	4^{2} $16^{4} = 4.3^{a}$
	2.14-2.28 (m) H ⁶	3 J6'2 = 4.5 ^{a)}		2.38 H ⁶	$\frac{-2PH^{\circ}}{3}$, 5° , $2 = 4.6^{a}$
	2.49-2.56 (m) H ⁶	$^{2}J_{DU}6' = 9.7^{a}$		2.66 H ⁶	$^{2}J_{6}' = 9.8^{a})^{1}$
	3.22-3.32 (m)			3.24-3.36 (m)7 5	
	3.48-3.59 (m)			3.49-3.60 (m)	H
	3.62-3.78 (m) H ²			3.62-3.74 (m) H ²	
6a ^{b)}	0.68-0.79 (m) H ³ '	$^{2}_{J_{H}6_{H}6'} = 14.2^{a}$	ക b)	0.66-0.82 (m) H ³	' ${}^{2}_{J_{H}6_{H}6'} = 14.3^{a}$
	0.92-1.11 (m) H ⁴ H ⁴ '	${}^{3}J_{\mu}6_{\mu}2 = 2.4^{a}$		0.87-1.09 (m) H ⁴	$H^{4'} \frac{3}{J_{H}6_{H}2} = 2.5^{a}$
	1.12-1.28 (m) H ³ H ⁶ '	${}^{2}_{J_{\rm PH}6} = 11.0^{\rm a}$		1.10-1.29 (m) H ³	$H^{6'} \frac{2}{J_{PH}^{a}} = 11.2^{a}$
	2.09 (dod) H ⁶			1.94 (ddd) н ⁶	
	2.97-3.09 (m) H ²			3.29-3.11 (m) H ²	:
	3.18-3.31 (m) H ⁵ H ⁵ '			3.12-3.43 (m) H ⁵	H ⁵ '

Tab. 2. ¹H-NMR-Spektren (in C_6D_6) von 2, 4a, b und 6a, b

^{a)} Berechnet. – ^{b)} Meßfrequenz 400 MHz.

Im Alkylbereich weist das ¹³C{¹H}-NMR-Spektrum von 2 vier auf die Atome C³, C⁴, C⁵, C⁶ zurückzuführende Resonanzen auf, wobei diejenigen von C³, C⁶ und die Absorption des nicht im Alkylbereich liegenden C²-Atoms durch ³¹P-Wechselwirkung in Dubletts aufgespalten sind. Die Komplexierung von 2 mit 1a,b zu 4a,b bewirkt eine Zu- bzw. erhebliche Abnahme der Kopplungskonstanten ¹J_{PC⁶} bzw. ²J_{PC²} (vgl. Tab. 3)^{28,29)}. In den ¹³C{¹H}-NMR-Spektren der Chelatkomplexe 6a,b beobachtet man bezüglich der Verschiebung der ¹³C-

Signale von C² und C⁵ den inversen, bei allen übrigen C-Atomen dagegen einen gleichsinnigen Effekt im Vergleich zu den an sie gebundenen Protonen (vgl. Diskussion der ¹H-NMR-Spektren)²⁹⁾. Die durch den Ringschluß in 6a, berzwungene *cis*-Anordnung der M – Pund C⁶ – C²-Bindungen hat die Zunahme der P – C²-Wechselwirkungskonstante zur Folge. Die geringe Kopplung in 4a, b spricht dagegen für *trans*-Position^{30,31)}.

In den ¹³C-Spektren von 3 und 5b führen die THF-Ringatome C⁵ [3] und C⁴ [5b] zu Singuletts, alle anderen C-Atome von 3 und 5a, b liefern infolge der beiden diastereotopen Tetrahydrofurfuryl-Substituenten³²⁾ des Enantiomerenpaares vier, oder durch Kopplung mit ³¹P acht, nicht mehr einzelnen Diastereomeren zuzuordnende Resonanzen. Zur Unterscheidung zwischen metallkoordiniertem und nicht komplexiertem Tetrahydrofurfuryl-Rest wurden aus Ether erhaltene Einkristalle eines Diastereomerenpaares von 7b ¹³C{¹H}-NMRspektroskopisch und röntgenographisch untersucht. Demnach verhalten sich die chemischen Verschiebungen der einzelnen C-Atome wie diejenigen von 4a,b bzw. 6a,b (vgl. Tab. 3). Die Kristallstrukturbestimmung bestätigt den sich aus den spektroskopischen Daten ergebenden Aufbau. Eine endgültige Verfeinerung der Struktur ist jedoch wegen Fehlordnung nicht möglich³³.

Tab. 3. ${}^{13}C{}^{1}H$ -NMR-Daten von 2, 3, 4a, b, 5b, 6a, b und 7b der Tetrahydrofurfuryl-C-Atome in C₆D₆ (δ [ppm], in Klammern J [Hz])

	c ² (² J	PC)	c ³	(³ <u>J</u> p	 с)	c ⁴		c ⁵		c ⁶	(¹ <u>J</u>	PC)
2	77.29 (d,	18.8)	32.85	(d, 7	.1)	26.07	(s)	67.67	(s)	36.04	(d,	14.9)
4a	75.33 (d,	1.8)	33.60	(d, 7	.3)	25.51	(s)	67.59	(s)	39.04	(d,	20.1)
6 a	83.86 (d,	6.7)	31.48	(d, 1	1.0)	25,69	(s)	77.28	(s)	32.54	(d,	16.5)
4Ъ	75.38 (d,	0.9)	33.61	(d, 7	1.8)	25.52	(s)	67.67	(s)	39.93	(d,	24.7)
6Ъ	86.33 (d,	6.5)	31.02	(d, 1	10.4)	25.96	(s)	79.18	(s)	32.85	(d,	20.1)
3	77.1-78.1	(m)	32.0-3	3.5 ((m) 2	5.9-26.	2 (m)	67.56	(s)	36.0-3	7.5	(m)
5ь	75.7-76.8	(m)	33.2-3	4.3 ((m)	25.40	(s) 6	7.5-68.0	(m)	36.6-3	8.7	(m)
7ь ^{а)}	77.02 (d,	3.9) ^{b)}	33.08	(a, 8	8.4) ^{b)}	26.00	(s) ^{b)}	67.70	(s) ^{b]}	39.41	(d,	24.7) ^{b)}
	86.11 (d,	5.9) ^{C)}	30.86	(d, 1	11.0) ^{c)}	25.55	(s) ^{c)}	79.05	(s) ^{C)}	31.69	(d,	18.8) ^{C)}

^{a)} Einkristalle. – ^{b)} Nichtkomplexierter Anteil. – ^{c)} Komplexierter Anteil.

Hochdruckversuche

Im Anschluß an die Untersuchungen über das komplexchemische Verhalten der Liganden 2 und 3 wurde auch ihr Einfluß auf Selektivität und Umsatz der Methanolhomologisierung geprüft. Die Versuche wurden unter relativ milden Bedingungen zwischen 200 und 300 bar Anfangsdruck, 180 °C und einer Reaktionszeit von jeweils 2 Stunden durchgeführt. Als Katalysatormetall fand Cobalt in Form seines Acetats, als Aktivator I₂ Verwendung. Für die "in situ"-Hydrierung des gebildeten Acetaldehyds zu Ethanol diente RuCl₃ · 3 H₂O³⁴).

Aus den Versuchen 1-9 (vgl. Tab. 4) ergibt sich die Abhängigkeit des Umsatzes und der Ethanolselektivität vom Synthesegasverhältnis bei jeweils gleicher Katalysatorzusammensetzung. Als Hauptprodukte werden dabei entweder Ethanol oder Methylacetat gebildet, letzteres vor allem bei steigendem CO-Gehalt¹⁰ mit einem Umsatz von über 70%. Es ist bekannt^{10,35}, daß unter den gegebenen Bedingungen Methylacetat auf zwei Wegen entstehen kann. Aus dem Katalysatorkomplex wird CH₃C(O)I reduktiv eliminiert^{13,35}, das nachfolgend mit MeOH zu MeC(O)OMe und HI reagiert. Methanol kann aber auch direkt mit dem Acylkomplex unter Ausbildung einer Hydridospezies zu MeC(O)OMe abreagieren^{6,10}. Der geringe H2-Partialdruck reicht nicht aus, um Acetaldehyd zu Ethanol zu hydrieren³⁰, weshalb dieser zu Acetalen weiterreagiert. In der Gasphase lassen sich IR-spektroskopisch größere Mengen CO2 nachweisen. Der höhere CO-Anteil verschiebt das Wassergasgleichgewicht im Sinne der Bildung von CO₂ und H₂, da bei der Homologisierung auch Wasser entsteht³⁾. Erhöht man den H₂-Partialdruck, so nimmt die Ethanolselektivität zuungunsten von Methylacetat und den Acetalen erheblich zu, bei gleichzeitig verminderten Umsätzen. In der Gasphase beobachtet man IR-spektroskopisch außerdem das Auftreten von Dimethylether³⁷). Der erhöhte H₂-Partialdruck begünstigt die Generierung von Iodwasserstoff, der seinerseits die Bildung von Dimethylether katalysiert. Mit Ethanolselektivitäten von 40 bzw. 54% und Umsätzen von 37 bzw. 31% zeigen

Tab. 4. Umsatz und Selektivitäten der Methanolhomologisierung in Abhängigkeit vom Synthesegasverhältnis (Ligand 2, T = 180 °C, Anfangsdruck bei Raumtemperatur 200 bar)^{a)}

			Selektivitä	iten (%)		
Nr.	Umsatz	EtOH	MeOAc	EtOAc	PrOH	H ₂ :CO
1	72 0	1.0	55.1	0.4		10.50
2	72.7	1.5	54.4	0.4	_	1.0:4.0
3	74.1	2.1	46.3	1.1	_	1.0:3.0
4	67.0	4.5	35.7	1.6	_	1.0:2.0
5	56.8	14.3	13.6	1.7	0.2	1.0:1.0
6	37.1	39.9	8.8	1.3	0.6	1.5:1.0
7	30.4	53.5	6.8	0.9	0.9	2.0:1.0
8	25.9	48.8	5.2	0.5	0.6	2.5:1.0
9	23.4	48.2	9.0	0.4	0.5	3.0:1.0

^{a)} Molare Verhältnisse MeOH:Co:I:L:Ru = 400:1:2:2:0.1.

Selektivität i = Ausbeute/Umsatz zu Produkt i =

 $\frac{\text{mol Methanol, umgesetzt zu Produkt }i}{\text{mol Methanol, insgesamt umgesetzt}} \times 100$

Tab. 5. Umsatz und Selektivitäten der Methanolhomologisierung in Abhängigkeit vom Druck (Ligand 2, $T = 180^{\circ}$ C, H_2 :CO = 1.5:1.0)^{a)}

Selektivitäten (%)										
Nr.	Umsatz	EtOH	MeOAc	EtOAc	PrOH	Druck				
6	37.1	39.9	8.8	1.3	0.6	200				
10	48.7	40.1	8.2	1.6	0.8	250				
11	47.7	47.2	9.1	1.8	1.0	275				
12	51.5	50.8	8.1	2.4	1.3	300				

^{a)} Molare Verhältnisse MeOH:Co:I:L:Ru = 400:1:2:2:0.1.

die Versuche 6 und 7 bei einem H_2 :CO-Verhältnis von 1.5:1 bzw. 2:1 den günstigsten Kompromiß zwischen Umsatz und Selektivität.

Mit den oben angegebenen Synthesegasgemischen und dem Liganden 2 wurde unter sonst gleichen Versuchsbedingungen auch die Druckabhängigkeit der Methanolhomologisierung geprüft. Übereinstimmend mit früheren Ergebnissen^{10,34,37}/ findet man eine deutliche Zunahme des Umsatzes bei Drucksteigerung um 100 bar, jedoch nur einen geringen Anstieg der Ethanolselektivität (vgl. Tab. 5 und 6).

Selektivitäten (%)											
Nr.	Umsatz	EtOH	MeOAc	EtOAc	PrOH	Druck					
7	30.4	53.5	6.8	0.9	0.9	200					
13	35.5	51.8	5.5	0.9	0.9	250					
14	39.3	49.3	5.4	1.0	1.0	275					
15	43.2	47.9	4.7	0.9	1.0	300					

Tab.	6.	Umsatz	und	Selektivitäten	der	Methanolhom	ologisierung	in	Abhängigkeit	vom
				Druck (Ligand	l 2, 7	$T = 180^{\circ}C, H_2$:CO = 2:1)	a)		

^{a)} Molare Verhältnisse MeOH:Co:I:L:Ru = 400:1:2:2:0.1.

Setzt man Methanol sowie das Katalysator- und Synthesegasgemisch (1.5:1) bei 180°C einem Anfangsdruck von 100 bar aus, kühlt nach 2 Stunden Reaktionszeit auf Raumtemperatur ab und wiederholt den gleichen Prozeß dreimal hintereinander, so ergibt sich ein gaschromatographisch ermittelter Umsatz von über 51% bei einer Ethanolselektivität von mehr als 46%. Die Versuchsreihe zeigt, daß der Katalysator mehrere Zyklen unbeschadet übersteht, so daß sich dadurch Umsatz und Selektivität noch weiter steigern lassen.

Bei Verwendung des dreizähnigen Liganden 3 wurden durchweg schlechtere Ergebnisse erzielt. Dies wird in erster Linie auf die geringere thermische und kinetische Stabilität von 3 zurückgeführt (vgl. Tab. 7).

			Selektivitä	äten (%)			
Nr.	Umsatz	EtOH	MeOAc	EtOAc	PrOH	H ₂ :CO	Druck
1	56.8	6.6	14.5	0.5	_	1.0:1.0	200
2	43.5	20.0	7.2	0.8	0.2	1.2:1.0	200
3	44.3	25.9	8.8	0.8	0.2	1.2:1.0	250
4	52.5	37.4	8.4	1.8	0.6	1.2:1.0	300

Tab. 7. Umsatz und Selektivitäten der Methanolhomologisierung in Abhängigkeit vom Synthesegasverhältnis und Druck (Ligand 3, T = 180 °C)^{a)}

^{a)} Molare Verhältnisse MeOH:Co:I:L:Ru = 400:1:2:2:0.1.

Die bei den Hochdruckversuchen mit den Liganden 2 und 3 erzielten Ergebnisse lassen sich mit den in der Literatur beschriebenen Versuchen nicht ohne weiteres vergleichen, da neben verschiedenen Definitionen der Selektivität auch die Reaktionsbedingungen uneinheitlich sind. Die in dieser Arbeit verwendeten milden Bedingungen führen mit Umsätzen und Selektivitäten von über 50% zu guten Ergebnissen. Vergleicht man 2 mit Furfuryldiphenylphosphan und PPh₃¹⁾, so stellt man bei geringer Selektivität erhöhten Umsatz, im zweiten Fall dagegen eine Verbesserung sowohl der Selektivität als auch des Umsatzes fest. Die hohe Basizität von 2 begünstigt die oxidative Addition von CH_3I und dadurch den Methanolumsatz³⁸⁾.

Wir danken der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie e. V., Fonds der Chemischen Industrie, und dem Bundesminister für Forschung und Technologie (BMFT) für die finanzielle Förderung dieser Arbeit. Der Degussa und der Wacker-Chemie GmbH sind wir für die Überlassung von wertvollen Ausgangsmaterialien zu Dank verpflichtet.

Experimenteller Teil

Kohlenmonoxid wurde zur Absorption von CO_2 und O_2 durch eine alkalische Pyrogallol-Lösung³⁹⁾, zur Trocknung über P_4O_{10} und Molekularsieb geleitet. Alle Umsetzungen erfolgten in einer gereinigten Stickstoff- bzw. unter sorgfältig an einer Chrom(II)-Oberflächenverbindung auf Kieselgel⁴⁰⁾ gereinigten Argonatmosphäre. Die verwendeten Lösungsmittel waren sorgfältig getrocknet und N₂-gesättigt. THF und Diethylether wurden jeweils frisch über LiAlH₄ destilliert.

Massenspektren: Varian MAT 711 A. – IR-Spektren: Beckman IR 12 und Perkin Elmer 598 IR-Spektrometer mit Datenstation $3600. - {}^{1}H-, {}^{13}C{}^{1}H{}- und {}^{31}P{}^{1}H{}-NMR-Spektren:$ Bruker WP 80 und Bruker AC 80 (Meßfrequenzen: 80.00, 20.11 bzw. 32.39 und 80.13, 20.15bzw. 32.44 MHz; int. Standard TMS bzw. ext. Standard 85proz. Phosphorsäure/D₂O oder $1proz. Phosphorsäure/[D₆]Aceton); {}^{H}-NMR-Spektren von$ **4a,b**,**6a,b**: Bruker CryospecWM 400. – Mikroelementaranalysen: Carlo Erba 1104 und AtomabsorptionsspektrometerPerkin Elmer, Modell 4000. – Photoreaktionen: Hg-Hochdrucklampe 5Q 150 OriginalHanau. – Hochdruckreaktionen: Anlage der Fa. Haage, Autoklav Typ 1220 mit 250 mlVolumen und mechanischer Rühreinrichtung. – GC-Untersuchungen: Fractovap 2400 Tvon Carlo Erba mit FID und Dünnfilm-Quarz-Kapillarsäule SP 1000, Länge 50 m; Integrator 3390 A der Fa. Hewlett Packard.

I. Allgemeine Vorschrift für die Synthese der Pentacarbonylphosphanmolybdän- und -wolfram-Komplexe **4b** und **5a**, **b**: Eine Lösung von Mo(CO)₆ bzw. W(CO)₆ in 275 ml THF wird unter intensivem Rühren bei Raumtemp. 1.5 h mit einer Quecksilbertauchlampe bestrahlt. Danach tropft man in geringem Unterschuß das entsprechende, in 20 ml THF gelöste Phosphan **2**, **3** zu, rührt weitere 14 h bei Raumtemp. und zieht anschließend das Solvens i. Vak. vollständig ab. Der farblose Rückstand wird in 100-200 ml *n*-Hexan aufgenommen und die Lösung mit Filterpapier-belegter Fritte (P4) filtriert. Aus dem Filtrat fallen **4b** und **5a**, **b** als farblose Kristalle an.

1. Pentacarbonyl[diphenyl(tetrahydrofurfuryl)phosphan]wolfram (4b): Einwaage 1.5 g (4.3 mmol) W(CO)₆ und 1.1 g (4.1 mmol) 2. Ausb. 1.5 g (62%). Schmp. 77 °C. – ¹H-NMR (C₆D₆): $\delta = 6.92 - 7.07$ (m; 6H, *m.p*-Ph), 7.22 - 7.49 (m; 4H, *o*-Ph). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 128.20 - 138.90$ (m; *C*-Ph). – ³¹P{¹H}-NMR (THF): $\delta = 3.9$ [s (¹⁸⁴W); d (¹⁸³W), ¹J_{WP} = 242.5 Hz]. – MS (FD, 8 kV): m/z = 594 (M⁺, bez. auf ¹⁸⁴W).

C22H19O6PW (594.2) Ber. C 44.47 H 3.22 W 30.94 Gef. C 44.26 H 3.37 W 29.82

2. Pentacarbonyl/phenylbis(tetrahydrofurfuryl)phosphan]molybdän (5a): Einwaage 2.2 g (8.3 mmol) Mo(CO)₆ und 1.5 g (5.4 mmol) 3. Ausb. 0.9 g (32%). Zers.-P. 91 °C. – ¹H-NMR (CDCl₃): $\delta = 1.10-2.99$ (m; 12H), 3.42-4.59 (m; 6H, PCH₂C₄H₇O), 7.22-7.79 (m; 5H, Ph). $- {}^{13}C{}^{1}H{}$ -NMR (C₆D₆): $\delta = 25.20-25.70$ (m; C⁴), 33.40-34.35 (m; C³), 34.90-38.65 (m; C⁶), 67.50-67.95 (m; C⁵), 75.45-76.76 (m; C²), 128.21-138.10 (m; C-Ph). $- {}^{31}P{}^{1}H{}$ -NMR (THF): $\delta = 11.9$ (s), 13.4 (s), 14.6 (s). - MS (FD, 8 kV): m/z = 516 (M⁺, bez. auf 98 Mo).

C21H23MOO7P (514.3) Ber. C 49.04 H 4.51 Mo 18.65 Gef. C 49.17 H 4.65 Mo 17.93

3. Pentacarbonyl[phenylbis(tetrahydrofurfuryl)phosphan]wolfram (5b): Einwaage 2.0 g (5.7 mmol) W(CO)₆ und 1.5 g (5.4 mmol) 3. Ausb. 2.1 g (65%). Schmp. 82°C. - ¹H-NMR (CDCl₃): $\delta = 1.05 - 3.16$ (m; 12H), 3.30 - 4.48 (m; 6H, PCH₂C₄H₇O), 7.14 - 0.85 (m; 5H, Ph). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 128.20 - 138.10$ (m; C-Ph). - ³¹P{¹H}-NMR (THF, -30° C): $\delta = -4.7$ (s; d, ¹J_{WP} = 233.4 Hz), -6.6 (s; d, ¹J_{WP} = 234.4 Hz), -9.5 (s; d, ¹J_{WP} = 232.0 Hz). - MS (FD, 8 kV): m/z = 601 (M⁺, bez. auf ¹⁸⁴W).

C₂₁H₂₃O₇PW (602.2) Ber. C 41.88 H 3.85 W 30.53 Gef. C 42.08 H 4.02 W 29.20

II. Allgemeine Vorschrift zur Darstellung der Chelatkomplexe 6a, b, 7a, b: Eine Lösung von 4a, b bzw. 5a, b in 125 ml Diethylether wird bei -30 °C unter intensivem Rühren 1 h mit einer Quecksilbertauchlampe bestrahlt. Der sich bildende Niederschlag wird abfiltriert (P4), mit n-Pentan gewaschen und i. Vak. getrocknet. Im Fall von 6a, 7a wird aus THF/n-Hexan umkristallisiert.

1. Tetracarbonyl[diphenyl(tetrahydrofurfuryl)phosphan-P,O]molybdän (6a): Einwaage 1.2 g (2.4 mmol) 4a. Ausb. 0.4 g (35%). Zers.-P. 104°C. $- {}^{1}$ H-NMR (C₆D₆): $\delta = 6.92 - 7.08$ (m; 6H, m.p-Ph), 7.51 - 7.70 (m; 4H, o-Ph). $- {}^{13}$ C{ 1 H}-NMR (C₆D₆): $\delta = 128.30 - 136.90$ (m; C-Ph). $- {}^{31}$ P{ 1 H}-NMR (THF, -30°C): $\delta = 38.3$ (s). - MS (FD, 8 kV): m/z = 480(M⁺, bez. auf 98 Mo).

C21H19M0O5P (478.3) Ber. C 52.74 H 4.00 Mo 20.06 Gef. C 52.87 H 4.07 Mo 19.43

2. Tetracarbonyl[diphenyl(tetrahydrofurfuryl)phosphan-P,O]wolfram (**6b**): Einwaage 1.1 g (1.9 mmol) **4b**. Ausb. 0.6 g (57%). Zers.-P. 142°C. - ¹H-NMR (C₆D₆): $\delta = 6.92-7.08$ (m; 6H, *m*,*p*-Ph), 7.47-7.72 (m; 4H, *o*-Ph). - ¹³C{¹H}-NMR (C₆D₆): 128.20-136.60 (m; C-Ph). - ³¹P{¹H}-NMR (THF, -30°C): $\delta = 35.8$ (s; d, ¹J_{WP} = 252.5 Hz). - MS (FD, 8 kV): m/z = 566 (M⁺, bez. auf ¹⁸⁴W).

C21H19O5PW (566.2) Ber. C 44.55 H 3.38 W 32.47 Gef. C 44.99 H 3.48 W 31.92

3. Tetracarbonyl[phenylbis(tetrahydrofurfuryl)phosphan-P,O]molybdän (7a): Einwaage 1.3 g (2.5 mmol) 5a. Ausb. 0.2 g (16%). Zers.-P. 88 °C. – ¹H-NMR (C₆D₆): $\delta = 0.60-2.91$ (m; 12H), 3.05–4.42 (m; 6H, PCH₂C₄H₇O), 6.81–8.20 (m; 5H, Ph). – ³¹P{¹H}-NMR (THF, -30 °C): $\delta = 31.3$ (s), 32.1 (s), 33.0 (s), 33.4 (s). – MS (FD, 8 kV): m/z = 488 (M⁺, bez. auf ⁹⁸Mo).

 $C_{20}H_{23}MoO_6P$ (486.3) Ber. C 49.40 H 4.77 Mo 19.73 Gef. C 49.41 H 4.61 Mo 19.02

4. Tetracarbonyl[phenylbis(tetrahydrofurfuryl)phosphan-P,O]wolfram (7b): Einwaage 1.0 g (1.7 mmol) 5b. Ausb. 0.7 g (73%). Zers.-P. 119 °C. - ¹H-NMR (C₆D₆): $\delta = 0.58-4.59$ (m; 18H, PCH₂C₄H₇O), 6.80-8.15 (m; 5H, Ph). - ¹³C{¹H}-NMR (C₆D₆): $\delta =$ 128.10-139.20 (m; C-Ph). - ³¹P{¹H}-NMR (THF, -30 °C): $\delta =$ 27.8 (s; d, ¹J_{WP} = 245.6 Hz), 28.0 (s; d, ¹J_{WP} = 245.6 Hz), 29.1 (s; d, ¹J_{WP} = 243.2 Hz), 30.0 (s; d, ¹J_{WP} = 245.5 Hz). - MS (FD, 8 kV): m/z = 574 (M⁺, bez. auf ¹⁸⁴W).

C20H23O6PW (574.2) Ber. C 41.83 H 4.04 W 32.02 Gef. C 41.72 H 3.98 W 31.19

III. trans-Tetracarbonylbis[diphenyl(tetrahydrofurfuryl)phosphan]molybdän (trans-8a): Eine Lösung von 2.4 g (9.1 mmol) Mo(CO)₆ und 5.1 g (18.5 mmol) 2 in 250 ml Methylcy-

clohexan wird 21 h unter Rückfluß erhitzt. Nach dem Abkühlen auf Raumtemp. filtriert (P4) man den gelben Niederschlag, wäscht zwei- bis dreimal mit 20-30 ml n-Pentan und trocknet i. Vak.; Ausb. 5.5 g (81%). Zers.-P. 173 °C. – ¹H-NMR (C_6D_6): $\delta = 0.70 - 1.77$ (m; 8H, CH₂CH₂), 2.55-2.81 (m; 2H, PCH₂), 2.92-3.73 (m; 6H, PCH₂CHOCH₂), 4.05-4.50 (m; 2H, CH₂CHOCH₂), 6.82-7.91 (m; 20H, Ph). – ¹³C{¹H}-NMR (CDCl₃): $\delta = 25.86$ (s; C⁴), 32.08-32.43 (m; C³), 39.66-41.04 (m; C⁶), 66.95 (s; C⁵), 76.01-76.52 (m; C²), 127.28-141.52 (m; C-Ph). – ³¹P{¹H}-NMR (THF): $\delta = 34.7$ (s). – MS (FD, 8 kV): m/z = 750 (M⁺, bez. auf ⁹⁸Mo).

C₃₈H₃₈MoO₆P₂ (748.6) Ber. C 60.97 H 5.12 Mo 12.82 Gef. C 61.14 H 5.25 Mo 12.01

IV. cis-Tetracarbonylbis/diphenyl(tetrahydrofurfuryl)phosphan/molybdän (cis-8a): Zu einer Lösung von 1.5 g (5.0 mmol) nor- $C_7H_8Mo(CO)_4$ in 100 ml Diethylether tropft man innerhalb 1 h bei $-20^{\circ}C$ eine solche von 2.7 g (1.0 mmol) 2 in 30 ml Diethylether. Zur Vervollständigung der Reaktion rührt man noch 4 h, kühlt auf $-35^{\circ}C$ ab, filtriert (P4) den farblosen Niederschlag, wäscht zwei bis dreimal mit 20-30 ml n-Pentan und trocknet den Rückstand i. Vak.; Ausb. 2.3 g (61%). Zers.-P. 143°C. - ¹H-NMR (C_6D_6): $\delta = 0.49-1.60$ (m; 8H, CH₂CH₂), 2.04-3.02 (m; 4H, PCH₂), 3.10-4.11 (m; 6H, CHOCH₂), 6.85-7.82 (m; 20H, Ph). - ¹³C{¹H}-NMR (C_6D_6): $\delta = 25.70-25.80$ (m; C⁴), 32.95-33.20 (m; C³), 38.16-40.18 (m; C⁶), 67.12 (s; C⁵), 76.10-76.85 (m; C²), 128.80-138.50 (m; C-Ph). - ³¹P{¹H}-NMR (THF, $-30^{\circ}C$): $\delta = 22.2$ (s), 22.4 (s). - MS (FD, 8 kV): m/z = 750 (M⁺, bez. auf ⁹⁸Mo).

C₃₈H₃₈MoO₆P₂ (748.6) Ber. C 60.97 H 5.12 Mo 12.82 Gef. C 61.88 H 5.51 Mo 12.05

V. Umsetzung von 6b, 7b mit $P(OMe)_3$: Zu einer auf -20° C gekühlten Lösung von 200 mg 6b, 7b in 50 ml THF tropft man innerhalb 1 h eine äquimolare Menge $P(OMe)_3$, gelöst in 25 ml THF. Anschließend erwärmt man langsam auf Raumtemp., rührt noch weitere 14 h, zieht das Lösungsmittel i. Vak. ab und trocknet den Rückstand i. Vak.

1. cis-Tetracarbonyl/diphenyl(tetrahydrofurfuryl)phosphan](trimethylphosphit)wolfram (9b): Einwaage 0.2 g (0.35 mmol) 6b. Ausb. 0.24 g (100%). Schmp. 67 °C. -1H-NMR (C₆D₆): $\delta = 0.69 - 1.61$ (m; 4H, CH₂CH₂), 2.28 - 2.78 (m; 1H, PCH₂), 2.92 - 3.72 (m; 3H, PCH₂CHOCH₂), 3.25 (d, ³J_{PH} = 11.2 Hz; 9H, POCH₃), 3.87 - 4.31 (m; 1H, CH₂CHOCH₂), 6.91 - 7.88 (m; 10H, Ph). $-1^{3}C{1H}$ -NMR (C₆D₆): $\delta = 25.94$ (s; C⁴), 32.99 (d, ³J_{PC} = 4.3 Hz; C³), 40.06 (dd, ¹J_{PC} = 22.0 Hz, ³J_{PC} = 1.8 Hz; C⁶), 51.66 (d, ²J_{PC} = 4.3 Hz; POCH₃), 67.15 (s; C⁵), 76.52 (d, ²J_{PC} = 2.5 Hz; C²), 128.01 - 139.67 (m; C-Ph). $-3^{3}P{1H}$ -NMR (THF): $\delta = 5.2$ (d, ²J_{PP} = 30.5 Hz; dd, ¹J_{WP} = 230.5 Hz), 140.7 (d, ²J_{PP} = 30.5 Hz; dd, ¹J_{WP} = 379.5 Hz). - MS (FD, 8 kV): m/z = 690 (M⁺, bez. auf ¹⁸⁴W).

C24H28O8P2W (690.3) Ber. C 41.76 H 4.09 W 26.63 Gef. C 41.91 H 4.24 W 25.91

2. cis-Tetracarbonyl[phenylbis(tetrahydrofurfuryl)phosphan)](trimethylphosphit)wolfram (10b): Einwaage 0.2 g (0.35 mmol) 7b. Ausb. 0.24 g (100%). Schmp. 72 °C. – ¹H-NMR (C₆D₆): $\delta = 1.03 - 4.63$ (m; 18H, PCH₂C₄H₇O), 3.27 (d, ³J_{PH} = 11.2 Hz; POCH₃), 3.29 (d, ³J_{PH} = 11.2 Hz; POCH₃), 6.92 - 7.87 (m; 5H, Ph). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 25.63$ (s; C⁴), 33.34 - 34.63 (m; C³), 36.70 - 39.01 (m; C⁶), 51.55 (d, ²J_{PC} = 3.7 Hz; POCH₃), 67.00 - 68.23 (m; C⁵), 76.42 - 77.40 (m; C²), 128.20 - 133.00 (m; C-Ph). – ³¹P{¹H}-NMR (THF): $\delta = -3.4$ (d, ²J_{PP} = 29.7 Hz; dd, ¹J_{WP} = 278.0 Hz), -4.1 (d, ²J_{PP} = 30.5 Hz; dd, ¹J_{WP} = 278.0 Hz), -4.9 (d, ²J_{PP} = 30.5 Hz; dd, ¹J_{WP} = 278.0 Hz), 142.4 (d, ²J_{PP} = 29.7 Hz; dd, ¹J_{WP} = 381.0 Hz), 142.5 (d, ²J_{PP} = 30.5 Hz; dd, ¹J_{WP} = 381.0 Hz), 142.6 (d, ²J_{PP} = 30.5 Hz; dd, ¹J_{WP} = 381.0 Hz). – MS (FD, 8 kV): m/z = 698 (M⁺, bcz. auf ¹⁸⁴W).

C23H32O9P2W (698.3) Ber. C 39.56 H 4.62 W 26.33 Gef. C 39.27 H 4.78 W 25.03

2629

VI. Umsetzung von 6a, b, 7a, b mit CO: Eine auf -20° C gekühlte Lösung von 100 mg 6a, b, 7a, b in 30 ml THF wird mit CO (1 h) gesättigt. Anschließend erwärmt man langsam auf Raumtemp. ohne Unterbrechung des CO-Stromes. Nach 16 h können 6a, b, 7a, b IRspektroskopisch nicht mehr beobachtet werden. Die IR- und ${}^{31}P{}^{1}H{}-NMR-Spektren stim$ men mit denjenigen von 4a, b, 5a, b überein.

VII. Photochemische Umwandlung von trans-8a in cis-8a: Eine gesättigte bzw. verdünnte (280 mg) Lösung von trans-8a in 125 ml THF wird bei -30°C 1.5 h mit einer Quecksilbertauchlampe bestrahlt. Nach jeweils 30 min wird eine Probe entnommen und ${}^{31}P{}^{1}H{}$ -NMR-spektroskopisch untersucht. Die ³¹P-Daten stimmen mit trans-8a, 6a bzw. cis-8a überein.

VIII. Homologisierungsversuche von Methanol mit den Liganden 2, 3: Mischungen aus 50.0 g (1561 mmol) Methanol, 0.97 g (3.90 mmol) Co(O₂CCH₃)₂ · 4 H₂O, 0.11 g (0.39 mmol) $RuCl_3 \cdot 3 H_2O$, 0.99 g (7.80 mmol) I_2 und der jeweils 7.80 mmol entsprechenden Menge Phosphan werden im Autoklaven 2 h bei 180 °C einem Anfangsdruck von 200, 250, 275 bzw. 300 bar ausgesetzt (vgl. Tab. 4-7). Nach dem raschen Abkühlen und Abfiltrieren eines eventuell auftretenden Rückstandes wird das Produktgemisch gaschromatographisch untersucht.

Die Identifizierung der einzelnen Komponenten erfolgte nach einer GC-MS-Untersuchung an Hand der Retentionszeiten. Zur quantitativen Bestimmung diente Isobutanol als interner Standard. Der Methanolumsatz wurde aus der Menge an nicht umgesetztem Methanol, die Selektivitäten aus der Menge an verbrauchtem Methanol unter Berücksichtigung der Anzahl von Methylgruppen in den einzelnen Molekülen berechnet.

CAS-Registry-Nummern

2: 91533-65-2 / 3: 91533-64-1 / 4a: 91581-86-1 / 4b: 102724-34-5 / 5a: 102724-28-7 / 5b: 102724-35-6 / 6a: 102724-29-8 / 6b: 102724-36-7 / 7a: 102724-30-1 / 7b: 102724-37-8 / trans-8a: 102724-31-2 / cis-8a: 102779-21-5 / 9b: 102724-32-3 / 10b: 102724-33-4 / Mo(CO)₆: 13939-06-5 / W(CO)₆: 14040-11-0 / nor-C7H8Mo(CO)₄: 12146-37-1 / MeOH: 67-56-1 / E1OH: 64-17-5 / MeOAc: 79-20-9 / Co(O2CCH₃)2 · 4 H2O: 6147-53-1 / RuCl₃ · 3 H2O: 13815-94-6 / I2: 7553-56-2 / H2: 1333-74-0 / ČO: 630-08-0 / P(OMe): 121-45-9

- ³⁾ G. Braca und G. Sbrana, in Aspects of Homogeneous Catalysis (R. Ugo), S. 241, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 1984.
- ⁴⁾ D. L. King und J. H. Grate, Chemtech 15, 244 (1985).
- ⁵⁾ I. Wender, Catal. Rev.-Sci. Eng. 26, 303 (1984).

- ¹ K. H. Keim, J. Korff, W. Keim und M. Röper, Erdöl, Kohle, Erdgas, Petrochem. Brennst.-Chem. 35, 297 (1984).
- ⁸⁾ H. Bahrmann, W. Lipps und B. Cornils, Chem.-Ztg. 106, 249 (1982).
- 9) B. R. Gane und D. G. Stewart (British Petroleum Co. Ltd.), Eur. Pat. Appl. 3876 (5. 9. 1979) [Chem. Abstr. 92, P 22034r (1980)].
- ¹⁰⁾ M. É. Fakley und R. A. Head, Appl. Catal. 5, 3 (1983).
- ¹¹⁾ J. K. Stille und K. S. Y. Lau, Acc. Chem. Res. 10, 434 (1977). ¹²⁾ J. Halpern, Inorg. Chim. Acta 62, 31 (1982); Acc. Chem. Res. 3, 386 (1970).
- ¹³⁾ J. Hagen, Chem.-Ztg. 109, 63 (1985); 109, 203 (1985).
- ¹⁴⁾ G. L. Geoffroy und M. S. Wrighton, Organometallic Photochemistry, Academic Press, New York 1980; W. Strohmeier, Angew. Chem. 76, 873 (1964); Angew. Chem., Int. Ed. Engl. 3, 730 (1964).

¹⁾ V. Mitteil.: E. Lindner, Ch. Scheytt und P. Wegner, J. Organomet. Chem., im Erscheinen.

²⁾ E. Lindner, H. Rauleder, Ch. Scheytt, H. A. Mayer, W. Hiller, R. Fawzi und P. Wegner, Z. Naturforsch., Teil B 39, 632 (1984).

⁶⁾ M. Röper und H. Loevenich, in Catalysis in C₁-Chemistry (W. Keim), S. 105, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 1984.

- ¹⁵⁾ M. A. Bennett, L. Pratt und G. Wilkinson, J. Chem. Soc. 1961, 2037.
- ¹⁶⁾ R. W. Harrill und H. D. Kaesz, J. Am. Chem. Soc. 90, 1449 (1968); W. J. Knebel, R. J. Angelici, O. A. Gansow und D. J. Darensbourg, J. Organomet. Chem. 66, C11 (1974). ¹⁷⁾ F. W. Grevels, M. Lindemann, R. Benn, R. Goddard und C. Krüger, Z. Naturforsch., Teil
- B 35, 1298 (1980).
- ¹⁸⁾ F. Calderazzo, Angew. Chem. 89, 305 (1977); Angew. Chem., Int. Ed. Engl. 16, 299 (1977).
- ¹⁹⁾ E. Lindner und W. P. Meier, J. Organomet. Chem. 114, 67 (1976).
- ²⁰⁾ P. S. Braterman, in Metal Carbonyl Spectra, Academic Press, London, New York, San Francisco 1975.
- ²¹⁾ P. E. Garrou und G. E. Hartwell, J. Organomet. Chem. 55, 331 (1973).
- ²²⁾ R. Mathieu, M. Lenzi und R. Poilblanc, Inorg. Chem. 9, 2030 (1970).
- ²³⁾ R. S. P. Coutts, R. L. Martin und P. C. Wailes, Aust. J. Chem. 24, 2533 (1971).
- ²⁴⁾ P. E. Garrou, Chem. Rev. 81, 229 (1981).
- ²⁵⁾ S. Masamune, W. Choy, J. S. Petersen und L. R. Sita, Angew. Chem. 97, 1 (1985); Angew. Chem., Int. Ed. Engl. 24, 1 (1985).
- ²⁶⁾ H. Berke und C. Sontag, Z. Naturforsch., Teil B 40, 794 (1985).
- ²⁷⁾ H. Günther, NMR-Spektroskopie, 2. Aufl., S. 92, Thieme, Stuttgart 1983. 28) P. S. Braterman, D. W. Milne, E. W. Randall und E. Rosenberg, J. Chem. Soc., Dalton Trans. 1972, 1027; S. D. Chappell und D. J. Cole-Hamilton, ebenda 1983, 1051; S. Hiet-
- kamp, D. J. Stufkens und K. Vrieze, J. Organomet. Chem. 169, 107 (1979).
- ²⁹⁾ B. E. Mann, Adv. Organomet. Chem. 12, 135 (1974).
- ^{30]} D. G. Gorenstein, Prog. Nucl. Magn. Reson. Spectrosc. 16, 1 (1983).
- 31) G. A. Gray und S. E. Cremer, J. Org. Chem. 37, 3470 (1972).
- 32) K. Mislow und M. Raban, Top. Stereochem. 1, 1 (1967); M. Raban und K. Mislow, ebenda 2, 199 (1967): V. Schurig, Kontakte (Merck), Heft 2, 22 (1985).
- ³³⁾ H. A. Mayer, Dissertation, Univ. Tübingen 1986.
- ³⁴⁾ J. Korff und K. H. Keim, in C₁-Chemie, Expertengespräch und Statusseminar, veranstaltet von der Projektleitung Rohstofforschung, KFA Jülich GmbH, Im Auftrag des BMFT 1 (1982); M. Röper und H. Loevenich, ebenda 11 (1982); H. Bahrmann und W. Lipps, ebenda 27 (1982).
- ³⁵⁾ D. Forster, Adv. Organomet. Chem. 17, 255 (1979).
- ³⁶⁾ J. T. Martin und M. C. Baird, Organometallics 2, 1073 (1983).
- ³⁷⁾ W. R. Pretzer und T. P. Kobylinski, Ann. N. Y. Acad. Sci. 333, 58 (1980); P. Andrianary,
- G. Jenner und A. Kiennemann, J. Organomet. Chem. 252, 209 (1983).
 ³⁸⁾ H. Loevenich und M. Röper, C₁-Mol. Chem. 1, 155 (1984); M. Röper und H. Loevenich, J. Organomet. Chem. 255, 95 (1983).
- ³⁹⁾ G. Jander und E. Blasius, Einführung in das anorganisch-chemische Praktikum, 9. Aufl., S. 406, S. Hirzel, Stuttgart 1973.
- 40) H. L. Krauss, Nachr. Chem. Tech. 16, 260 (1968).

[41/86]